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LETTER TO THE EDITOR 

Metric properties of fractal lattices 
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t Centre de Recherches sur les Tr&s Basses TempCratures, CNRS, BP 166 X, 38042 Grenoble 
CCdex, France 
$Department of Physics El,  University of Pennsylvania, Philadelphia 19104, USA 

Received 29 March 1984 

Abstract. We study the connectivity dimension d^ of fractal lattices viewed as networks 
(graphs) of sites and (constant length) bonds. Two examples are investigated in detail: the 
ZD Sierpinski gaslket and 2D infinite percolation clusters on square and trianlgular lattices. 
In the first case d is shown to coincide with the fractal dimension, whereas d = 1.72kO.02 
appears as a universal exponent for percolation cluste;s in two dimensions. Considered 
as an intrinsic parameter, the connectively dimenion d is compared with other intrinsic 
and fxtrinsic characteristic parameters of fractal lattices. In pa-aicular we argue that 
d d d holds on fractal lattices in general ( d  = fractal dimension, d = spectral dimension). 

It is now recognised that there are many self-similar structures (fractals) in nature and 
many ways to model them (Mandelbrot 1982). Most of the attention so far has been 
focused on characterising the geometrical properties of fractals. The fractal dimension 
d hence emerges as a first operative measure of the fractal geometry. Recently, it has 
been shown (Alexander and Orbach 1982, Rammal and Toulouse 1983) that simple 
physical problems on fractal lattices (spectrum of low energy excitations, classical 
diffusion,. . .) are governed by another dimension: the spectral dimension 2. For 
instance, d’ = f and 1 < d S 4 for percolaiion clusters at all Euclidean dimensions d 2 2. 
In contrast, for the Sierpinski gaskets, d and d both depend on d :  d =In (d + l)/ln(2) 
and d’ = 2 In (d + l)/ln(d +3) (see e.g. Angles d’Auriac et a1 1983). Very recently, it 
was realised that d‘ is an intrinsic parameter, independent of the space in which the 
fractal is embedded, whereas d depends on this embedding (Rammal er a1 1984). One 
reason for this distinction is that d’ provides the proper counting of closed paths, 
whereas d is appropriate for the counting of points (or masses) at a given length scale. 
For instance, it has been shown that the self-avoiding walk (SAW) statistics on a fractal 
lattice is governed by another intrinsic exponent, independent of the 5mbedding space, 
which depends on d, and possibly on other parameters, as soon as d ~4 (Rammal et 
a1 1984). Moreover, it was shown that the spectral and fractal dimensions of the 
backbone are not sufficient to determine the properties of SAWS in general. Therefore, 
it is tempting to speculate that d’ is just the first of a hierarchy of intrinsic indices, 
controlling more and more specific properties of fractal lattices. In this Letter, we 
investigate another intrinsic property of fractal structures, viewed as infinite lattice 
graphs: the connectivity dimension. 

Basically, the connectivity dimension deal with the notion of distance between 
nodes implied by the lattice graph structure of the fractal. In general, the distance 
d ( x ,  y )  between two nodes x and y is defined as the length of the shortest path between 
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x and y. For simple graphs, this provides a natural metric space structure, and therefore 
all topological concepts of metric spaces take a precise signification: sphere, ball, etc. 
In this respect, two characteristic numbers can be considered. The first d ,  is defined 
by the asymptotic law behaviour (if any) of the volume A(I), of a bull of radius I 
( I  = integer): 

d ,  = In A(l)/ln 1. 

The second is defined similarly from the asymptotic behaviour of the ‘surface’ C(1) 
of a sphere of radius I :  

d2 = 1 +lim (In C(l)/ln I ) .  (2) 
1-L-2 

For infinite lattice graphs, the average over all possible origins is to be taken in (l), 
(2). As defined above, A(/) (resp. C(1)) is the number of lattice sites whose shortest 
path to a fixed origin consists of n bonds, with n s I (resp. n = l ) .  As was pointed out 
by several authors (Kasteleyn 1963, McKenzie 1981, Suzuki 1983), d ,  and dz as defined 
by (l), ( 2 )  are expected to be different in general, and also be distinct from the fractal 
dimension d of a fractal lattice (Suzuki 1983)). 

In the case of standard Euclidean lattices (simple cubic for instance), it is easy to 
show that d ,  = d ,  = d. This double equality is a simple consequence of the known 
equivalence between different metrics on Euclidean spaces. On a fractal lattice, d ,  
and d2 may be different from d For instance, for the von Koch curve we have d ,  = d ,  = 1 
and d = In 4/ln 3. The same hold also for a linear polymer and for a random walk 
trajectory. In both these particular cases, we have d ,  = d2 = d = 1 .  Moreover, it is clear 
that both d , ,  d2 and 2 are intrinsic parameters dealing with graph theory concepts 
(paths, loops,. . .). A natural question arises: is c ,  (or d,) equal to d on a general 
fractal lattice? In the following, we shall give a negative answer to this question, by 
studying carefully two examples of fractal lattices: the 2~ Sierpenski gasket (d = 
ln3/ln 2 ,  d = 2 In 3/ln 5 )  and the infinite percolation clusters in two dimensions. 

In figure I are shown the results obtained for C(1) as a function of the radius I for 
the 2~ Sierpenski gasket. C(1) represents the average over all possible origins on the 
gasket (exact enumeration) for 1 S IS 96. As can be seen, this plot exhibits a self-similar 
behaviour and C(1) does not behave as a simple power law as a function of I. Monte 
Carlo calculations for 12 96 show similar results and d2 (equation (2)) cannot be defined 
simply. Of course C(1) may be smoothed or bounded by power laws of 1. Such a 
procedure will provide a possible determination of the value of d,, but will not be 
discussed further here. Figure 2 gives the corresponding results for A(i) in the same 
range of I :  1 s 1s 96. A(1) behaves like a proper power law of I, and the value d ,  of 
the corresponding exponent was obtained as d ,  = 1:58 +0.02. These results answer our 
above questions and provide a non-trivial example where d ,  > 2. More precisely it 
can be shown that d ,  = d on the Sierpinski gaskets. This statement is a direct con- 
sequence of the equivalence between the used metric on the gasket (induced by its 
graph structure) and that of the triangular (at d = 2) lattice. This result is easy to obtain 
and holds at d = 3, 4 , .  . . . In general, the fractal dimension d provides an obvious 
upper bound for d , :  d ,  S (1. The Sierpinski gaskets give therefore an example where 
this upper bound is reached. On the contrary, the example of the von Koch curve 
shows that d ,  = 2(- 1). Therefore, it is tempting to conjecture the following inequality: 
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Figure 1.  The graph of the average 'surface' C(I )  of a sphere of radius I on a ZD Sierpinski 
gasket (SG) I S IS96.  The self h i l a r i t y  of this curve is clearly shown. 
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Figure 2. Log-log plot of the average volume A(/) 
of a ball of radius I for a 2D so.  The full straight 
line has the slope d = In 3/ln 2 (fractal dimension). 
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Figure 3. Log-log plot of the average volume A(/) 
of a ball of radius I, for an infinite site percolation 
cluster, at threshold pc .  Upper curve: triangular lat- 
tice (p,=0.5). Lower curve: spuare lattice ( p , =  
0.5927). The asymptotic slope d = I .72 *0.02 is the 
same in these two cases. 

d" s d ,  s d on a general fractal lattice. Besides the above examples, this conjecture is 
supported by the results obtained for the percolation clusters. 

We have performed the calculations of both A ( / )  and C(I)  on the infinite site 
percolation clusters at threshold pc .  A standard Monte Carlo procedure was used to 
generate clusters for the square lattice ( pc = 0.5927) and the triangular lattice ( p c  = 0.5). 
Statistics over some 1500 clusters, of lateral extension L 3 600, were performed in each 
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case. The asymptotic behaviour is reached at 13 lo2 for both A(I)  and C(1). In figure 
3, we show the results obtained for A(1). The exponent d ,  governing the power law 
of A(/) was found to be d ,  = 1.723tO.02. This value is the same on the square lattice 
and the triangular lattice. The same number (up to our accuracy) was obtained for 
d2, from the data relative to C(1). 

These results suggest that d ,  = d2 on the percolation clusters. The numerical value 
of this exponent is therefore universal and does not depend on the detailed structur: 
of the lattice (square or triangular). \n the following this exponent wi!l be, denoted d. 
Moreover the numerical estimate of d supports fully our conjecture: d s d s d on the 
2~ percolation clusters where d = 1.896 and d’ = 4/3. The double equality is obviou>ly 
reached at d = 1 where p c  = 1 and d’ = (i = d = 1. However, it is not clear for us if d is 
related to the usual critical exponents (& vp, . . .) of the percolation transition, in a 
simple way like d and d’. 

To conclude, we have presented in this letter a summary of some results relative 
to the connectivity dimension of fractal lattices. Our results suggest that in general 
this new intrinsic parameter fi lits between the fractal d and spectral d’ dimensions 
of the considered structure: d 6 d s d. The upper and lower bounds can be reached 
in particular situations. We have shown that d is a universal exponent on percolation 
clusters in two dimensions ( d  = 2). Results pertaining to the percolation clusters at 
d = 3, 4, 5, 6 will be presented elsewhere (Angles d’Auriac er a1 1984). The relevance 
of this new intrinsic exponent 2 for various statistical problems deserves a careful 
investgation in the furture. Potential examples are the SAWS, dimer problems, etc. 
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